March 2, 1983 WOCOMAL FRESHMAN MEET

ROUND I: ALGEBRAIC WORD PROBLEMS
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORE

Twelve years ago a boy was $\frac{1}{3}$ as old as he will be 2 years hence. How old is he now?
2. Becky has some nickels and quarters. The number of nickels is 6 less than 4 times the number of quarters. The value of the coins is $\$ 2.40$. Find the number of quarters Becky has.
3. Yesterday Paul and George together had \$100. Today, after giving George $\$ 10$, Paul finds that he has $\$ 4$ more than $\frac{1}{5}$ the amount George has now. How much does Paul have now?

SWERS: (1 point) 1.
(2 points) 2.
(3 points) 3. \$

ROUND II: SET THEORY

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM
7. If this Venn diagram represents two sets A and B which are subsets of a universal set $\{1,2,3, \ldots, 7\}$, what is the complement of $A \cap B$?

2. Let the universal set $U=\{1,2,3,4,5,6,7,8,9,10\}$, $A=\{2,3,4,5,7,9\}, B=\{3,4,6,9,10\}, C=\{1,4,5,7\}$, and C^{\prime} is the complement of C. Find $(A \cap B) \cap C^{\prime}$.
3. In a surey of 50 students, the following data were collected: There were 19 taking biology, 20 taking chemistry, 19 taking physics, 7 taking physics and chemistry, 8 taking biology and chemistry, 9 taking biology and physics, and 5 taking all three subjects. How many of the group are not taking any of the three subjects?

ISWERS: (1 point) 1.\{
(2 points) 2.\{
(3 points) 3. \qquad

Marlboro, Shepherd Hill, Southbridge

ROUND III: OPEN

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

- Express as a formula: The fractional part, F_{S}, of silver in an alloy containing x units of silver and c units of copper.

2. Using quarters, dimes, nickels and pennies, in how many different ways can a person receive $25 \notin$ in change?
3. A map of maine is such that $\frac{7}{16}$ of an inch represents a distance of $2 \frac{5}{8}$ miles. If a map distance is measured to be $12 \frac{3}{4}$ inches, what is the actual mileage it represents?

ISWERS:
(1 point) 1. $\mathrm{F}_{\mathrm{S}}=$
(2 points) 2.
(3 points) 3 . miles

Assabet Valley, Bartlett, Leicester

ROUND IV: OPERATIONS ON POLYNOMIALS
ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORN

- What polynomial must be added to $5 x^{2}-3 x+7$ to obtain $x^{3}+4 x+8$ as the sum.

2. Find the number c for which $x-5$ is a factor of $4 x^{3}-17 x^{2}-20 x+c$.
3. A rectangle whose width is $7 x+1$ has a perimeter of $2(2 x+1)(x+3)$. Find the area of the rectangle expressed as a polynomial in x.

ATSWERS: (1 point) 1.
(2 points) 2.__ $c=$
(3 points) 3.

TEAM: ROUND: FACTORING
EACH QUESTION COUNTS THREE POINTS
FACTOR COMPLETELY AND SIMPLIFY EACH FACTOR WHEN POSSIBLE

1. $6 s^{2}-11 s+3$
2. $x^{5}-18 x^{3}+81 x$
3.
4. \qquad
5. $2 n^{2}-c+c n-2 n$
6.
7. $81 x^{4}-16 y^{4}$
8. $a^{2}-b^{2}-c^{2}-2 b c$
9.
10. \qquad
11. $\left(x^{2}-4\right)-(x+2)^{2}$
12.
13. $6 x^{4}-x^{3}-77 x^{2}$
14. $12 a x+8 b c-16 a c-6 b x$
15.

. \qquad

Auburn, Bromfield, Hudson, Marlboro, St. Peter-Marian, Shepherd Hill Tantasqua, Worcester Academy
(1 point) I。 $F_{5}=\frac{x}{x+6}$
(2 points) 2. 13
(3 points) 3. 763 or 96.5 or
6. $\quad 4(x+2)$
$\frac{253}{2}$ miles

ROUGE IV
(1 point) i. $x^{3}=5 x^{2}+7 x+1$
(2 points) 2. e 25
3 points) $3 . \quad 14 x^{3}+2 x^{2}+14 x+2$

ROUND I

point) H. 19
(2 points) 2. 6
(3 points) 3. \$20

ROOD II
(1 point) 2. $\{2,3,4,5,6,7\}$
(2 points) 2. $\{3.9\}$

 (3 points each)

$$
\text { 2. } \quad x(x+3)^{2}(x-3)^{2}
$$

$$
\text { 3. } \quad(2 n+c)(n-1)
$$

(3 points) 3. 11

ROUND III

$$
\text { 1. }(3 s-1)(2 s-3)
$$

$$
\text { 40 } \quad\left(9 x^{2}+4 y^{2}\right)(3 x+2 y)(3 x-2 y)
$$

